

0040-4039(93)E0386-X

ENE REACTION OF FULLERENE C₆₀ and 4-allylanisole. INTRODUCTION OF ALKENE TO BUCKMINSTERFULLERENE¹

Shihui WU*, Lianhe SHU and Kangnian FAN

Department of Chemistry, Fudan University, Shanghai 200433, China

Abstract: 4-Allylanisole reacts with C_{60} at 200~220°C to form ene reaction adducts; The monoadduct was isolated by flash column chromatography and structurally characterized by FAB-MS, UV-VIS, IR, ¹H-NMR spectroscopies.

Since the success of preparation and separation of fullerenes on a preparative scale,² many chemists have been attracted to study fullerenes' versatile chemical and physical properties.³ Among the various types of reactions of fullerenes, e.g., electrophilic reactions,³ reduction⁴ and oxidation,⁵ the cycloaddition reactions⁶ play an important role in the functionalization of fullerenes. The pyracyclene model and knowledge of the high reactivity of the double bond at the junction of two hexagons³ lead us to study the ene reaction of C₆₀ and alkenes for the introduction of an alkene group to the C₆₀ molecule.

We tried the ene reaction between 1-heptene and C_{60} first. After heating a mixture of C_{60} and 1-heptene for 10 hours at 200°C, a mixture of adducts was obtained. The fast atom bombardment mass spectrometry(FAB MS)⁷ shows that there are three peaks higher than 720, i.e., 818 (monoadduct), 917(diadduct), and 1015(triadduct). But in seeking for an isolation procedure of the pure compounds, neither high-performance thin layer chromatography (HPTLC) nor high-performance liquid chromatography (HPLC) gave a single pure adduct. We designed a new substrate 4-allylanisole(1), which possesses a polar anisole moiety together with the reactive allylic function for the ene reaction.

The ene reaction adducts of C_{60} and 4-allylanisole (1) are obtained after heating for 15 hours at 200~220°C. The isolated yield of 2 is 38% (based on consumed C_{60}). It becomes easier to separate C_{60} from the monoadduct(2) because of the great difference in polarity. The HPTLC on silica gel gives a spot(R_f =0.64) for the monoadduct, when n-hexane and methylene chloride (3:1) is used as the eluent. Thus both the HPLC and flash column chromatography can very well separate the unreacted C_{60} from the monoadduct.

FAB mass spectrometry of monoadduct ($C_{70}H_{12}O$) displays a peak at 869 as well as one for C_{60} at 720 which arises from loss of $C_{10}H_{12}O$. The electronic absorption spectra of the monoadduct in hexane showed that it is similar to the spectra of C_{60} in ultraviolet region at wave length less than 300 nm. Two strong absorption bands at 213 and 257 nm are observed. But they are different in the weakly absorbing bands of the ultraviolet and visible region. There is a new weak absorption band at 310 nm, and the absorption band of C_{60} at 330 nm changes to a shoulder. In the visible region two new absorption bands at 431 and 706 nm are observed while the weak absorptions at 540 and 600 nm almost disappear. In Fourier transform infrared (FT-IR) spectrum the main C-C vibration bands of 2 are shifted slightly from those of C_{60} (corresponding C_{60} absorbance parenthesized): 1425.0(1429), 1171.9(1181), 562.5(572), 528.1(528.1) cm⁻¹. Both a weak unsaturated C-H stretch at 3025.0 cm⁻¹ and a middle *trans*-ethylenic hydrogen out of plane bend is observed at 965.6 cm⁻¹. The aromatic ring stretch vibration bands are located at 1606.2 and 1509.4 cm⁻¹. The stretch vibration band for methyl ether is located at 1246.9 cm⁻¹.

In ¹H nuclear magnetic resonance (¹H-NMR) spectrum⁸ the following signals are observed in CDCl₃ at δ 3.87(s, 3H, OCH₃), 4.32(d, 2H, CH₂, *J*=7.1 Hz), 6.60(s, 1H, C₆₀-H), 6.98(d,2H, Ar-H), 7.06(txd,1H, ethylenic-H, *J*₁=7.1 Hz, *J*_d=15.7 Hz), 7.21(d,1H, ethylenic-H, *J*=15.7 Hz), 7.61(d, 2H, Ar-H) ppm. The signal at 6.60 ppm shows that it is the C₆₀- H transition, which also indicates 1,2-substituted C₆₀-H.⁹ The signals at 6.98 and 7.61 ppm are a part of pattern of AA'XX' splitting for the four aromatic protons of the monoadduct (2) of the ene reaction . Both the coupling constant *J* =15.7 Hz for ethylenic proton in ¹H-NMR spectrum and the middle intensity absorbing band at 965.6 cm⁻¹ in FT-IR show that there is a *trans*-ethylenic link in the adduct molecule. This feature is consistent with the characteristic chair conformation of the transition state of ene reaction. These spectroscopical data are fully consistent with expectations for the structure of 2. The experimental finding for 2 was confirmed by semiempirical molecular orbital calculations with MNDO program on the reaction of C₆₀ and 4-allylanisole. Both 1-(4-methoxyphenyl)allyl and hydrogen atom are added at the junction of two six-membered rings in C₆₀ to give a 6-6 adduct 2a which is 25.9 Kcal/mol more stable than the isomeric 2b(a 5-6 adduct). Interestingly, this is mostly consistent with the addition of diphenylsilylene, for which the 6-6 adduct was calculated to be 19.4 Kcal/mol more stable than the 5-6 adduct⁶g.

The isolated monoadduct of this ene reaction is a dark brown microcrystalline powder. Structure analysis by X-ray diffraction is in progress.

Acknowedgment. This work is supported by the Science and Technology Commission of Shanghai Municipality. We thank National Key Laboratory of Bio-organic and Natural Product Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science for the collections of FAB mass spectra. We also thank Professor Yu-fen Li and Shi-xiong Qian for their kindly providing carbon soot.

References and Notes

- 1. This paper is presented at: "The First International Interdisciplinary Colloquium on the Science and Technology of the Fullerenes", Santa Barbara, June 27-July 1, 1993.
- 2. a)Kratschmer, W.; Lamb, L.D.; Fostiropoulos, K. and Huffman, D. R. Nature 1990, 347,354.
 b)Kratschmer, W.; Lamb, L.D.; Fostiropoulos, K. and Huffman D. R. Chem. Phys. Lett. 1990, 170, 167.
- 3. Wudl, F. Acc. Chem. Res. 1992, 25, 157 and references cited therein.
- 4. a)Haufler, R. E.; Conceicao, J.; Chicante, L.P.F. and et al. J. Phys. Chem. 1990, 94, 8634.
 b)Henderson, C. C. and Cahill, P.A. Science 1993, 259, 1885.
- 5. a)Greegan, K. M.;Robbins, J. L.; Millar, J. M.; Sherwood, R.D.; Tindall, P. J. and Cox, D. M. J. Am Chem. Soc., 1992, 114, 1103.
 - b)Elemes, Y.; Silverman, S. K.; Sheu, C.; Kao, M.; Foote C.S.; Alvarez, M. M. and Whetten, R. L. Angew. Chem., Int. Ed. Engl. 1992, 31,351.
 - c)Talianic, C.; Ruari, G.; Zamboni, R.; Danieli, R.; Rossini, S.; Denisov, V. N.; Burlakov, V. M.; Negri, F.; Orlandi, G. and Zerbetto, F. J. Chem. Soc., Chem. Commun. 1993, 220.
- 6. a)Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F. and Almarsson, O. Science 1991, 254, 1186.
 b)Hirsch, A.; Li, Q. and Wudl, F. Angew. Chem., Int. Ed. Engl. 1991, 30, 1309.
 c)Suzuki, T.; Li, Q.; Khemani, K.C.; Wudl, F. and Almarsson, O. J. Am. Chem. Soc. 1992, 114, 7300.
 - d)Suzuki, T.; Li, Q.; Khemani, K.C. and Wudl, F. J. Am. Chem. Soc. 1992, 114, 7301.
 - e)Rubin, Y.; Khan, S.; Freedberg, D. I. and Yeretzian, C. J. Am. Chem. Soc. 1993, 115, 344.

f)Hoke, S. H.,II,; Molstad, J.; Dilettato, D.; Jay, M. J.; Carlson, D.; Kahr, B. and Cooks, R.G. J. Org.Chem. 1992, 57, 5069.

- g)Akasaka, T.; Ando, W.; Kobayashi, K. and Nagase, S. J. Am. Chem. Soc. 1993, 115, 1605.
- 7. Fast atom bombardment mass spectra were recorded using a VG Quattro mass spectrometer.
- Proton nuclear magnetic resonance spectra were taken on a Bruker MSL-300 (300 MHz, Fourier transform mode) spectrometer.
- 9. Fagan, P. J.; Krusic, P. J.; Evans, D. H.; Lerke, S. A. and Johnson, E. J. Am. Chem. Soc. 1992, 114, 9697.

(Received in China 3 September 1993; accepted 16 November 1993)